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Chiral superconductors exhibit novel transport properties that depend on the topology of the order parameter,
topology of the Fermi surface, the spectrum of bulk and edge Fermionic excitations, and the structure of the
impurity potential. In the case of electronic heat transport, impurities induce an anomalous (zero-field) thermal
Hall conductivity that is easily orders of magnitude larger than the quantized edge contribution. The effect orig-
inates from branch-conversion scattering of Bogoliubov quasiparticles by the chiral order parameter, induced by
potential scattering. The former transfers angular momentum between the condensate and the excitations that
transport heat. The anomalous thermal Hall conductivity is shown to depend to the structure of the electron-
impurity potential, as well as the winding number, ν , of the chiral order parameter, ∆(p) = |∆(p)|eiνφp̂ . The
results provide quantitative formulae for interpreting heat transport experiments seeking to identify broken T
and P symmetries, as well as the topology of the order parameter for chiral superconductors.

Introduction – Chiral superconductivity occurs when
bound pairs of Fermions condense into a macroscopically
occupied two-particle state, ψ(r) ∼ (x+ iy)ν ∼ eiνφ , cor-
responding to Cooper pairs circulating about a unique chi-
ral axis, , with angular momentum ν h̄. Mirror symmetry
(P), with respect to a plane containing the chiral axis `,
is spontaneously broken in combination with time-reversal
(T) symmetry. Thus, left- and right-handed Cooper pairs
form time-reversed ground-states with counter-circulating
currents.1 Superfluid 3He-A is currently the only BCS con-
densate that is firmly established to exhibit chiral pairing.
The identification of broken P and T symmetries was made
by the observation of anomalous Hall transport of elec-
trons moving through 3He-A,2 in quantitative agreement
with transport theory.3

The search for an electronic analog of the chiral phase of
superfluid 3He has been widely pursued,4–6 driven in part
by theoretical predictions of novel properties of topolog-
ical superconductors. In 2D materials, chiral d-wave su-
perconductivity is predicted for doped graphene,7,8 while
a chiral p-wave state is proposed for MoS2.9 For the 3D
pnictide, SrPtAs, there is evidence of broken T symme-
try from µSR;10 a chiral d-wave state has been proposed
theoretically.11 The perovskite superconductor, Sr2RuO4,
is a promising candidate for chiral superconductivity based
on µSR and Kerr rotation measurements.12,13 The first su-
perconductor reported to show evidence of broken T sym-
metry was the heavy fermion superconductor, UPt3, based
on µSR linewidth measurements.14 This experiment fol-
lowed theoretical predictions of broken T and P symme-
tries in the B-phase of UPt3, i.e. the lower temperature
superconducting phase.15 Particularly striking is the ob-
servation of the onset of Kerr rotation at the transition to
the low-temperature B-phase of UPt3.16 However, defini-
tive proof of bulk chiral superconductivity in any of these
materials awaits a zero-field bulk transport measurement
that otherwise vanishes in the absence of broken P and T
symmetries.

Chiral superconductors are also topological phases char-
acterized by a Chern number equal to the winding num-
ber, ν , of the phase of the Cooper pairs. The non-trivial
topology manifests as |ν | branches of chiral Fermions
confined near a boundary at which the topology changes
discontinuously.17,18 These edge states are unique to chiral

superconductors. The response of the edge spectrum to a
thermal gradient has been shown to generate an anomalous
(zero field) thermal Hall conductance, Kedge

xy = ν π
6 k2

B T/h̄,
in which the chiral axis ` assumes the role of the per-
pendicular magnetic field.19–22 While the zero-energy edge
state is protected by the bulk topology, the spectrum of chi-
ral edge states, and their transport currents, is sensitive to
surface disorder. Furthermore, impurities embedded in an
otherwise fully gapped chiral superconductor can destroy
the bulk topology by closing the bulk gap. When this hap-
pens the thermal Hall conductance persists, but is no longer
quantized. Theoretical work based on point-like impurities
predicts an anomalous thermal Hall effect (ATHE) in chi-
ral p-wave superconductors, but no ATHE for |ν | ≥ 2.23–25

In this Letter we present a theory of anomalous Hall
transport of heat in chiral superconductors with impurity
disorder, and show that the impurity-induced ATHE can
be orders of magnitude larger than that from the chiral
edge states. We also show the impurity-induced ATHE
requires the coupling between quasiparticles, which trans-
port heat and charge, with the condensate which breaks
T and P symmetries. Two mechanisms provide the cou-
pling between quasiparticles and the chiral condensate.
The first is the transfer of Cooper pair angular momentum
to quasiparticle transport currents via branch-conversion
(Andreev) scattering. When an incident electron (e) with
angular momentum mh̄ relative to an impurity undergoes
branch conversion scattering the outgoing hole (h) acquires
angular momentum ν h̄ from the chiral condensate, i.e.,
em → hm+ν . Similarly, hm → em−ν . This process re-
quires finite scattering cross sections for partial waves as-
sociated with the angular momenta of incident and outgo-
ing states and is therefore absent for point-like impurities
which generate only s-wave scattering. The second mech-
anism is the direct coupling of the perturbation to the con-
densate, which is possible if, and only if, the perturbation
and the condensate belong to the same orbital representa-
tion. A thermal gradient generates a p-wave perturbation,
∝ vp ·∇T , and will couple directly to a chiral p-wave con-
densate. Importantly, both mechanisms must also breaks
particle-hole symmetry to allow a net transfer of angular
momentum between the condensate and scattered quasi-
particles. As a result, for point-like impurities, the ab-
sence of Andreev scattering means that an ATHE is possi-
ble only for chiral superconductors with |ν |= 1. However,
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for finite-radius impurities, scattering in multiple angular
momentum channels leads to an ATHE for chiral super-
conductors with larger Chern numbers, |ν | ≥ 2. This is
also the basic mechanism responsible for the anomalous
Hall effect of electrons moving through superfluid 3He-A.3

Theory – Our theory and analysis starts from the
quasiclassical formulation of the transport equations for
nonequilibrium superconductivity,26,27 with our notation
and formalism explained in Ref. 28. We calculate the ther-
mal conductivity tensor for chiral superconductors from
the non-equilibrium response of the quasiparticle distri-
bution and spectral functions to a thermal gradient in the
linear-response limit, in which case the heat current is
jε =−κ ·∇T where κ is the thermal conductivity.

The effects of impurity scattering on the chiral ground
state, the appearance of a sub-gap quasiparticle spectrum,
and the non-equilibrium response to a temperature gra-
dient, are encoded in our theory via the impurity aver-
aging technique, and the resulting quasiparticle-impurity
t-matrix. The latter is a functional of the quasiclassical
propagator and self energies, all of which are calculated
self-consistently, including the impurity-scattering vertex
corrections. To highlight the effects of chirality on heat
transport, we focus on fully gapped 2D chiral supercon-
ducting ground states defined on a cylindrically symmetric
Fermi surface, ∆(p̂) = ∆eiνφp̂ , where φp̂ is the azimuthal
angle of relative momentum, p, of the Cooper pair and ν
is the winding number of the order parameter around the
Fermi surface.29 The mean-field Hamiltonian for excita-
tions in a chiral ground state takes the form

Ĥ = ξpτ̂3 +∆(τ̂1 cosνφp̂ + τ̂2 sinνφp̂), (1)

where ξp is the normal-state dispersion and τ̂1, τ̂2, τ̂3 de-
note the Pauli matrices in particle-hole space.30 The spec-
tra of quasiparticles and Cooper pairs are also encoded in
the equilibrium retarded (R) and advanced (A) propaga-
tors,

ĝR,A
eq (p̂;ε) =−π

ε̃R,Aτ̂3− ∆̃R,Aeiτ̂3νφp̂(iτ̂2)√
(∆̃R,A)2− (ε̃R,A)2

, (2)

which define the corresponding quasiparticle and Cooper
pair propagators, gR,A and f R,A, as ĝR,A =−π[gR,A(ε)τ̂3 +

f R,A(ε)eiτ̂3νφp̂(iτ̂2)]. Note that ε̃R,A and ∆̃R,A are the renor-
malized excitation energy and order parameter, ε̃R,A =
ε ± i0+ − ΣR,A and ∆̃R,A = ∆ + ΛR,A. We consider only
renormalization by impurity scattering since this is the
dominant scattering process in the low-temperature limit.
The structure of the impurity self energy in Nambu space
takes the form,31

Σ̂R,A
imp(p̂;ε)≡DR,A(ε)1̂+ΣR,A(ε)τ̂3+ΛR,A(ε)eiτ̂3νφp̂(iτ̂2). (3)

The mean-field order parameter, ∆, satisfies the weak-
coupling gap equation, ∆ = −V

2

ffl
dε tanh ε

2T Im f R(ε),
where the integration is over the pairing bandwidth,
(−εc,+εc), and V is the strength of the pairing interac-
tion, V (p̂, p̂′) = 2V cos[ν(φp̂−φp̂′)] for the ν th irreducible
representation of SO(2) symmetry of the Fermi surface.

For a homogeneous, random distribution of impuri-
ties the self-energy, Σ̂imp(p̂;ε) = nimpt̂(p̂, p̂;ε), is propor-

tional to the mean impurity density, nimp, and the forward-
scattering limit of the the single-impurity t-matrix, the lat-
ter of which satisfies,

t̂(p̂′, p̂) = t̂N(p̂′, p̂)

+ N f

ˆ 2π

0

dφp̂′′

2π
t̂N(p̂′, p̂′′)

[
ĝ(p̂′′)− ĝN

]
t̂(p̂′′, p̂) .(4)

We omit the superscripts unless needed, N f denotes the
single-spin normal-state density of states at the Fermi
energy and ĝR,A

N = ∓iπτ̂3 is the normal-state propaga-
tor. The normal-state t-matrix is parametrized in terms of
quasiparticle-impurity scattering phase shifts, δm, for each
angular momentum channel, m,

t̂N(p̂′, p̂) =
−1
πN f

+∞

∑
m=−∞

eim(φp̂−φp̂′ )

cotδm + ĝN/π
. (5)

For the equilibrium propagator (Eq. 2), we obtain the
t-matrix from (4), and the corresponding impurity self-
energy terms,

Σ(ε) = ∑
m

Am g(ε)sin2 δm (6)

Λ(ε) = ∑
m

Am f (ε)sinδm cos(δm−δm+ν)sinδm+ν (7)

D(ε) = ∑
m

Am sinδm[g(ε)2 sinδm sin(δm−δm+ν)

+cosδm cos(δm−δm+ν)], (8)

Am =−nimp

πN f

∆̃2− ε̃2

∆̃2 cos2(δm−δm+ν)− ε̃2
. (9)

For a single impurity, multiple scattering results in sub-gap
quasiparticle bound states, εb,m = ±|∆|cos(δm − δm+ν),
which appear as isolated poles of the t-matrix amplitude
Am(ε). These states broaden into sub-gap bands for finite
impurity density. The off-diagonal self-energy, Λ, is gener-
ated by Andreev scattering, a branch-conversion scattering
process in which a particle turns into a hole, or vice versa.
The angular momentum associated with each partial wave
of the incoming and outgoing states must differ by an inte-
ger equal to the Cooper pair angular momentum quantum
number ν , i.e., both δm and δm+ν must be finite for a given
value of m. Thus, point-like impurities, which scatter only
in the s-wave channel, do not generate branch-conversion
processes in chiral superconductors, and so do not couple
to Cooper pair angular momentum.

Heat current in response to an imposed temperature gra-
dient is obtained from the non-equilibrium response of the
Keldysh propagator, δ ĝK ,

jε = N f

ˆ 2π

0

dφp̂

2π

ˆ
dε
4πi

εvp Tr
{

δ ĝK(p̂;ε)
}
, (10)

where vp = v f p̂ is the Fermi velocity. It is convenient
to introduce the anomalous propagator, ĝa, and anoma-
lous self-energy, Σ̂a, defined in terms of the correspond-
ing Keldysh (K), retarded (R) and advanced (A) functions,
δ x̂a = δ x̂K− tanh ε

2T (δ x̂R− δ x̂A), where x̂ ∈ {ĝ, Σ̂}. The
first-order corrections to the retarded and advanced prop-
agators and self-energies vanish to linear order in vp ·∇Φ
(cf. Ref. 32). Thus, the linear response contribution to the
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FIG. 1. (a) The total and pair-breaking scattering cross sections,
σtot and σpb, as functions of the hard-disc radius R for ν = 1
(solid) and ν = 2 (dashed). (b) The critical temperature Tc as a
function of k f R for ν = 1 (solid) and ν = 2 (dashed), and a range
of impurity densities (see legend).

anomalous propagator reduces to the Keldysh propagator,

δ ĝa =−
Ca
+ĝR

eq/π +Da
−

(Ca
+)

2 +(Da
−)2

[
(ĝR

eq− ĝA
eq) ih̄vp ·∇Φ

+(ĝR
eqδ Σ̂a−δ Σ̂aĝA

eq)
]
, (11)

where ∇Φ = ∇ tanh[ε/2T (r)] is the gradient of the local
equilibrium distribution function, Ca

+ = 2Re
√

∆̃2− ε̃2 and
Da
− = 2i ImD(ε + i0+).
The non-equilibrium response of the self-energy is ob-

tained from the anomalous t-matrix, which in linear re-
sponse reduces to

δ Σ̂a(p̂)=nimp N f

ˆ 2π

0

dφp̂′

2π
t̂R
eq(p̂, p̂

′)δ ĝa(p̂′)̂tA
eq(p̂

′, p̂) . (12)

These are the “vertex corrections” in diagrammatic
quantum field theories. They describe the dynamical
screening of perturbations by long-wavelength collective
excitations.33 This self energy correction is central to
anomalous Hall transport. In its absence the diagonal
terms of the Keldysh propagator have the same angular de-
pendence as the perturbation (cf. Eq. 11), and thus generate
a heat current along the temperature gradient and no Hall
response.

Impurity Scattering Model – To quantify the effects
of finite-size impurities, we consider hard-disc scatter-
ing characterized by the scattering phase shifts, tanδm =
J|m|(k f R)/N|m|(k f R), where R is the hard-disc radius, and
Jm(z) (Nm(z)) are Bessel functions of the first (second)
kind.34 Non-magnetic impurities in chiral superconductors
are pair-breaking.35,36 The critical temperature, Tc, is sup-
pressed, ln

Tc0
Tc

= Ψ
(

1
2 +

1
2

ξ0σpbnimp
Tc/Tc0

)
−Ψ

( 1
2

)
, where Ψ(x)

is the digamma function,37 and Tc0 and ξ0 = h̄v f /2πTc0
are the critical temperature and coherence length in the
clean limit. The pair-breaking cross section is given by
σpb = (2/k f )∑+∞

m=−∞ sin2(δm − δm+ν), for a chiral order
parameter with a winding number ν . The pair-breaking
cross-section vanishes for s-wave superconductors (ν = 0),
yielding Tc = Tc0 as expected.38 In Fig. 1(a) the pair-
breaking cross section is shown to differ substantially from
the total cross section, σtot = (4/k f )∑m sin2 δm, except in
the limit k f R� 1. In Fig. 1(b) the dependence of Tc on
both the impurity radius and the winding number are high-
lighted for several impurity densities.
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FIG. 2. N(ε)/N f for chiral states with ν = 1 (left) and ν = 2
(right), various impurity densities normalized by ξ 2
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(see legend), and impurity radii k f R = 1 (top) and 2.5 (bottom).
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FIG. 3. κxx/κN(Tc0) versus T/Tc0 for ν = 1 (left) and ν = 2
(right), k f R = 1 and various values of LN/ξ0 (see legend). The
normal-state thermal conductivity is shown in black.

Density of States – The quasiparticle density of states,
N(ε) =N f ImgR(ε+ i0+), also depends on the chiral wind-
ing number. Figure 2 shows sub-gap bound states, broad-
ened into bands by the finite impurity density. These states
are formed via multiple Andreev scattering by the chiral
order parameter, induced by potential scattering. The num-
ber of the sub-gap bands, and their bandwidths, depend
not only on the structure of the impurity potential, e.g. the
hard-disc radius, but also on the chiral winding number.
This fact has important implications for thermal transport
in the limit T . ∆. Impurities enhance the thermal con-
ductivity of the superconducting state at low temperatures
through the formation of sub-gap states that transport heat.
A sub-gap “metallic” density of states at the Fermi energy,
N(0) 6= 0, results in κxx ∝ T . Figure 3 shows the tem-
perature dependence of κxx. The low-temperature metallic
behavior is always present for ν = 2, whereas for ν = 1 it
occurs only at sufficiently high impurity densities.

The normal-state thermal conductivity, κN =
(π2/3)N f (v f T )LN , is limited by the transport mean
free path, LN = 1/(σtr nimp), where the transport cross
section is defined by σtr = (2/k f )∑m sin2(δm− δm+1). In
the superconducting state, axial symmetry is broken by
the chiral order parameter. The corresponding thermal
conductivity tensor, κi j, acquires off-diagonal terms,
κxy = −κyx, in addition to the diagonal components,
κxx = κyy. Thus, there is a transverse (Hall) component
of heat current. The longitudinal and transverse con-
ductivities, κxx and κxy, are obtained by computing the
heat current induced by a temperature gradient using
Eqs. 10-12.

Figure 4 shows the effects of finite-size impurities on
heat transport. While the longitudinal conductivity, κxx, is
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only weakly affected by impurity size or winding number
(except at ultra-low temperatures), the thermal Hall con-
ductivity, κxy, depends strongly on both k f R and ν . For im-
purities that are smaller than the inverse Fermi wavelength,
k f R < 1, quasiparticle scattering is predominantly in the
s-wave channel. The resulting thermal Hall conductivity
is strongly suppressed for winding number ν = 2, but re-
mains finite in the limit k f R→ 0 for ν = 1. The numerical
results agree with our previous observation that the ATHE
vanishes in the limit of point-like impurities for chiral su-
perconductors with |ν | ≥ 2. For impurities with k f R > 1
the Hall conductivity is substantially larger for chiral su-
perconductors with ν = 2, compared to ν = 1. Also note
that the Hall conductivity is sensitive to the impurity po-
tential, in this case exhibiting nonmonotonic dependence
on the impurity size.
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FIG. 4. Longitudinal (top) and transverse (bottom) thermal con-
ductivity versus T/Tc for ν = 1 (left) and ν = 2 (right). The
normal-state transport mean free path is LN/ξ0 = 7.5, and vari-
ous impurity radii (see legend). The black line is κN(T )/κN(Tc).

3D Chiral Superconductors – The results for 2D chiral
states easily generalize to chiral states defined on closed
3D Fermi surfaces with line and point nodes. This includes
the ATHEs in 3D candidates for chiral superconductors,
including Sr2RuO4 and UPt3. Figure 5 shows the ther-
mal Hall conductivity for chiral superconductors belong-
ing to the spin-triplet, odd-parity E1u and E2u representa-
tions, and the spin-singlet, even-parity E1g and E2g repre-
sentations of the hexagonal D6h point group, and Eu and Eg
representations of D4h. These representations cover nearly
all of the proposed candidates for chiral superconductors.
Note that the impurity-induced thermal Hall conductivity
(solid lines) typically dominates the edge contribution22,39

(dashed lines) in all chiral pairing states with finite-size
impurities. Also, note the sensitivity of κxy to k f R partic-
ularly for winding number |ν | = 1, as well as the order
of magnitude difference in κxy for chiral E1u versus E1g.
For UPt3 with k f = 1Å−1, ξ0 = 100Å and Tc = 0.5K we
estimate κxy >3×10−3 WK−1m−1 at T = 0.8Tc for the f -
wave E2u chiral state with a hard-sphere impurity radius

k f R=1.5 (Fig. 5), which is well within reported sensitiv-
ities of current experimental measurements of the thermal
Hall effect.40

Bulk vs. Edge – The impurity-induced ATHE typically
dominates the edge contribution for a 2D chiral p-wave
superconductor by an order of magnitude or more de-
pending on the impurity density and material parame-
ters. For k f ξ0 = 100, LN/ξ0 = 7.5 and k f R = 0.5, we
have κ imp

xy ≈ 100κedge
xy at T = 0.8Tc (maximum in κxy, see

Fig. 4). Here κedge
xy is computed from Eq. (25) in Ref. 39.

However for sufficiently clean 2D chiral p-wave super-
conductors the edge contribution, given by the quantized
value, κedge

xy /T = πk2
B/6h̄,19,21,41 can dominate the impu-

rity contribution at very low temperatures. In the case of
the latter, κ imp

xy /T vanishes due to the absence of sub-gap
states at ε = 0. Thus, below a threshold impurity den-
sity, the dominant contribution to the ATHE for the fully
gapped chiral p-wave case at T � ∆ comes from the re-
sponse of the chiral edge Fermions.

−60
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−20
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5

10
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0

5
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y/
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T c 6h̄
k f

FIG. 5. κxy vs T/Tc for various k f R (see legend), and chiral
states belonging to the E1u, E2g, E1g and E2u representations of
D6h. The dashed lines represent the edge contribution to κxy.
Results are shown for LN/ξ0=7.5 and k f ξ0=100.

Conclusions – Branch-conversion (Andreev) scattering
by the chiral order parameter is the key mechanism respon-
sible for skew scattering, and thus the thermal Hall conduc-
tivity, in chiral superconductors. For finite size impurities
Andreev scattering is activated for any winding number,
e.g. ν = 1 (p-wave) or ν = 2 (d-wave). The impurity-
induced thermal Hall conductivity is easily orders of mag-
nitude larger than that due to edge states. In summary, our
work provides quantitative formulae for interpreting heat
transport experiments seeking to identify broken T and P
symmetries, as well as the topology of the order parameter
for chiral superconductors.
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